跟踪位置和方向独立提供了更敏捷的动作,以实现过度射击的多旋翼无人机(UAV),同时引入了不希望的倒入效果;推力发电机产生的倾斜流可能会因接近性而抵消其他流动,从而极大地威胁了平台的稳定性。建模空气动力气流的复杂性挑战了适当补偿这种副作用的算法。利用无人机分配的输入冗余,我们通过新的控制分配框架来解决此问题,该框架考虑了倾斜效果,并探索了整个分配空间以获得最佳解决方案。该最佳解决方案避免了倾斜效果,同时在硬件约束中提供了高推力效率。据我们所知,我们的是第一个调查对过度驱动无人机的倾斜影响的正式推导。我们在模拟和实验中验证了不同硬件配置的框架。
translated by 谷歌翻译
我们设计一个3D场景图表示,触点图+(CG+),以进行有效的顺序任务计划。此触点基于图形的表示,带有类似谓词的属性,带有简洁的几何信息和有效的机器人风格交互作用摘要场景布局。可以通过随机优化方法的遗传算法生成触点图上自然指定的目标配置。然后,通过计算初始触点图和目标配置之间的图形编辑距离(GED)来初始化任务计划,该图形配置生成了与可能的机器人操作相对应的图表编辑操作。我们通过强加约束来调节图形编辑操作的时间可行性,确保有效的任务和运动对应关系来最终确定任务计划。在一系列的模拟和实验中,机器人成功完成了使用常规规划语言(如计划域定义语言(PDDL))很难指定的复杂顺序重新安排任务,证明了机器人在接触图上的高可行性和潜力。
translated by 谷歌翻译
我们提出了一个机器人学习和计划框架,该框架以最少的共同努力生成有效的工具使用策略,能够处理不同于培训的物体。利用有限元方法(FEM)基于模拟器,该模拟器在观察到的刀具使用事件给定的细粒度,连续的视觉和物理效果中,通过提出的迭代迭代符号深化回归(IDSR)算法来识别促成效果的基本物理特性。我们进一步设计了一种基于最佳控制的运动计划方案,以整合机器人和特定于工具的运动学和动力学,以产生有效的轨迹,从而实现学习性能。在模拟中,我们证明了所提出的框架可以产生更有效的工具使用策略,这与在两个示例任务中观察到的框架截然不同。
translated by 谷歌翻译
我们设计了一个合作规划框架,为束缚机器人Duo产生最佳轨迹,该轨迹是用柔性网聚集在大面积中蔓延的散射物体。具体地,所提出的规划框架首先为每个机器人生产一组密集的航点,用作优化的初始化。接下来,我们制定迭代优化方案,以产生平滑和无碰撞的轨迹,同时确保机器人DUO内的合作,以有效地收集物体并正确避免障碍物。我们使用模型参考自适应控制器(MRAC)验证模拟中的生成轨迹,并在物理机器人中实现它们,以处理携带有效载荷的未知动态。在一系列研究中,我们发现:(i)U形成本函数在规划合作机器人DUO方面是有效的,并且(ii)任务效率并不总是与系绳网的长度成比例。鉴于环境配置,我们的框架可以衡量最佳净长度。为了我们的最佳知识,我们的最初是第一个为系列机器人二人提供此类估算。
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
Few Shot Instance Segmentation (FSIS) requires models to detect and segment novel classes with limited several support examples. In this work, we explore a simple yet unified solution for FSIS as well as its incremental variants, and introduce a new framework named Reference Twice (RefT) to fully explore the relationship between support/query features based on a Transformer-like framework. Our key insights are two folds: Firstly, with the aid of support masks, we can generate dynamic class centers more appropriately to re-weight query features. Secondly, we find that support object queries have already encoded key factors after base training. In this way, the query features can be enhanced twice from two aspects, i.e., feature-level and instance-level. In particular, we firstly design a mask-based dynamic weighting module to enhance support features and then propose to link object queries for better calibration via cross-attention. After the above steps, the novel classes can be improved significantly over our strong baseline. Additionally, our new framework can be easily extended to incremental FSIS with minor modification. When benchmarking results on the COCO dataset for FSIS, gFSIS, and iFSIS settings, our method achieves a competitive performance compared to existing approaches across different shots, e.g., we boost nAP by noticeable +8.2/+9.4 over the current state-of-the-art FSIS method for 10/30-shot. We further demonstrate the superiority of our approach on Few Shot Object Detection. Code and model will be available.
translated by 谷歌翻译
This paper focuses on designing efficient models with low parameters and FLOPs for dense predictions. Even though CNN-based lightweight methods have achieved stunning results after years of research, trading-off model accuracy and constrained resources still need further improvements. This work rethinks the essential unity of efficient Inverted Residual Block in MobileNetv2 and effective Transformer in ViT, inductively abstracting a general concept of Meta-Mobile Block, and we argue that the specific instantiation is very important to model performance though sharing the same framework. Motivated by this phenomenon, we deduce a simple yet efficient modern \textbf{I}nverted \textbf{R}esidual \textbf{M}obile \textbf{B}lock (iRMB) for mobile applications, which absorbs CNN-like efficiency to model short-distance dependency and Transformer-like dynamic modeling capability to learn long-distance interactions. Furthermore, we design a ResNet-like 4-phase \textbf{E}fficient \textbf{MO}del (EMO) based only on a series of iRMBs for dense applications. Massive experiments on ImageNet-1K, COCO2017, and ADE20K benchmarks demonstrate the superiority of our EMO over state-of-the-art methods, \eg, our EMO-1M/2M/5M achieve 71.5, 75.1, and 78.4 Top-1 that surpass \textbf{SoTA} CNN-/Transformer-based models, while trading-off the model accuracy and efficiency well.
translated by 谷歌翻译
Benefiting from the intrinsic supervision information exploitation capability, contrastive learning has achieved promising performance in the field of deep graph clustering recently. However, we observe that two drawbacks of the positive and negative sample construction mechanisms limit the performance of existing algorithms from further improvement. 1) The quality of positive samples heavily depends on the carefully designed data augmentations, while inappropriate data augmentations would easily lead to the semantic drift and indiscriminative positive samples. 2) The constructed negative samples are not reliable for ignoring important clustering information. To solve these problems, we propose a Cluster-guided Contrastive deep Graph Clustering network (CCGC) by mining the intrinsic supervision information in the high-confidence clustering results. Specifically, instead of conducting complex node or edge perturbation, we construct two views of the graph by designing special Siamese encoders whose weights are not shared between the sibling sub-networks. Then, guided by the high-confidence clustering information, we carefully select and construct the positive samples from the same high-confidence cluster in two views. Moreover, to construct semantic meaningful negative sample pairs, we regard the centers of different high-confidence clusters as negative samples, thus improving the discriminative capability and reliability of the constructed sample pairs. Lastly, we design an objective function to pull close the samples from the same cluster while pushing away those from other clusters by maximizing and minimizing the cross-view cosine similarity between positive and negative samples. Extensive experimental results on six datasets demonstrate the effectiveness of CCGC compared with the existing state-of-the-art algorithms.
translated by 谷歌翻译
As one of the prevalent methods to achieve automation systems, Imitation Learning (IL) presents a promising performance in a wide range of domains. However, despite the considerable improvement in policy performance, the corresponding research on the explainability of IL models is still limited. Inspired by the recent approaches in explainable artificial intelligence methods, we proposed a model-agnostic explaining framework for IL models called R2RISE. R2RISE aims to explain the overall policy performance with respect to the frames in demonstrations. It iteratively retrains the black-box IL model from the randomized masked demonstrations and uses the conventional evaluation outcome environment returns as the coefficient to build an importance map. We also conducted experiments to investigate three major questions concerning frames' importance equality, the effectiveness of the importance map, and connections between importance maps from different IL models. The result shows that R2RISE successfully distinguishes important frames from the demonstrations.
translated by 谷歌翻译